
Japan Linux Symposium 2009
2009.10.23

Daisuke Numaguchi
Tetsuo Handa

Giuseppe La Tona
NTT DATA CORPORATION

1. INTRODUCTIONS

Copyright (C) 2009 NTT Data Corporation 22009/10/23

TOMOYO overview
MAC implementation for Linux
Behavior oriented system analyzer and

protector

Pathname-based MAC tools

It consists of:
a kernel patch (ccspatch)

a set of utilities (ccstools) for managing
access control settings (a.k.a. policy)

Copyright (C) 2009 NTT Data Corporation 32009/10/23

MAC(Mandatory Access Control)
Restrict access according to policy.

No exception, no bypass

Performed inside kernel space

SELinux, Smack, TOMOYO, AppArmor,
LIDS, grsecurity, etc.

2009/10/23 Copyright (C) 2009 NTT Data Corporation 4

How to use TOMOYO?
Protect

System administrator's operations

Learning

Know system behaviors

Analyze

Debug

Copyright (C) 2009 NTT Data Corporation 52009/10/23

Android overview

Copyright (C) 2009 NTT Data Corporation 62009/10/23

Android Kernel
Linux Kernel 2.6 with some changes
Reduced set of standard Linux utilities ->

toolbox

No support glibc -> Bionic libraries

No standard IPC -> Binder , specific IPC
driver

No native windowing system

Optimized Power Management

 Low memory killer, Alarm etc.

Copyright (C) 2009 NTT Data Corporation 72009/10/23

Dalvik and Zygote
 Runtime is made by Java programs running in

Dalvik: Virtual Machine for mobile devices

 slow CPU, small RAM, no swap space, battery
 Not a JVM, no JIT: only interpreter of DEX

(optimized bytecode obtained from Java .class)
 Multiple VM instances can run efficiently.

 Zygote process:

 first instance of Dalvik VM, partially initialized
 load preload classes and resources
 is kept always alive in idle state
When an application execution request occurs:
 zygote fork()s to a new process…
 …which loads the requested package
(Biology concept of “zygote”: duplicate, specialize and differentiate)

Copyright (C) 2009 NTT Data Corporation 82009/10/23

Dalvik and Zygote
 Runtime is made by Java programs running in

Dalvik: Virtual Machine for mobile devices

 slow CPU, small RAM, no swap space, battery
 Not a JVM, no JIT: only interpreter of DEX

(optimized bytecode obtained from Java .class)
 Multiple VM instances can run efficiently.

 Zygote process:

 first instance of Dalvik VM, partially initialized
 load preload classes and resources
 is kept always alive in idle state
When an application execution request occurs:
 zygote fork()s to a new process…
 …which loads the requested package
(Biology concept of “zygote”: duplicate, specialize and differentiate)

Copyright (C) 2009 NTT Data Corporation 9

fork()

application

zygote

Dalvik VM

2009/10/23

systemserver

service
manager
service

managerSystem Services

Dalvik VM

fork()

Dalvik VMDalvik VMDalvik VM

GUI

service
manager
service

managerApplications

Home

Runtime

Android boot sequence

10

Kernel

initinitDaemons

init

initinitNative
Servers

adbd
vold (mount)
rild (radio)
debuggerd
installd
…

Binder

servicemanager

re
g

is
tr

at
io

n

mediaserver zygote

exec()

fork()

Dalvik
specialization

Copyright (C) 2009 NTT Data Corporation2009/10/23

Android security model (1/2)
Each application runs in its own process

 Runtime in separate instances of Dalvik

virtual machine

Copyright (C) 2009 NTT Data Corporation 11

Dalvik VM

Application 1

Zygote

Dalvik VM

Application 2

Dalvik VM

Application 3

Dalvik VM

Application 4

2009/10/23

Android security model (2/2)
 Each process is a “secure sandbox”

 Linux Discretionary Access Control (DAC) for file access: all

applications are assigned a unique UID (constant)

 UID for system services are hard-coded

 UID for user packages are progressively assigned at install-time,

starting from uid 10000 (and mapped to app_0, app_1, …);

they are saved in a file and are maintained constant during the

life of the package on the device.

 Application specific files are saved in /data/data in separate

folders owned by specific UID users

Copyright (C) 2009 NTT Data Corporation 122009/10/23

2. TOMOYO ON ANDROID

Copyright (C) 2009 NTT Data Corporation 132009/10/23

TOMOYO Linux versions
There are 2 development lines:

 Fully equipped version (1.x series)

 provides full functionalities of pathname-based MAC
(MAC for files, network, capabilities…)

Mainlined version (2.x series)

 uses Linux Security Modules (LSM)

 subset of MAC functionalities (only for files, so far)

 missing functionalities will be added in the future

 supports only kernels 2.6.30 and later

Copyright (C) 2009 NTT Data Corporation 142009/10/23

Android kernel
Android SDK 1.6 ("donut") comes with

kernel 2.6.29 .

Copyright (C) 2009 NTT Data Corporation 152009/10/23

Android kernel
Android SDK 1.6 ("donut") comes with

kernel 2.6.29 .

TOMOYO 2.x is available since kernel
2.6.30

TOMOYO 2.2 function is only file
access control

Copyright (C) 2009 NTT Data Corporation 162009/10/23

Android kernel
Android SDK 1.6 ("donut") comes with

kernel 2.6.29 .

TOMOYO 2.x is available since kernel
2.6.30

TOMOYO 2.2 function is only file
access control

So, choose TOMOYO 1.x !!
Copyright (C) 2009 NTT Data Corporation 172009/10/23

Porting TOMOYO to Android
Patching Android Kernel with

TOMOYO patch

Adapting ccstools

Cross-compiling for Android

Adding TOMOYO Policy Loader to
Android boot

Creating policy
Copyright (C) 2009 NTT Data Corporation 182009/10/23

Patching Android Kernel
TOMOYO 1.7.x (Fully equipped version)

Emulator (no real Android device needed)

 Linux kernel version: Goldfish v2.6.29

 “Goldfish” is the name given to the ARM
architecture emulated by Android SDK Emulator

 ccspatch 1.7.1-pre for Goldfish v2.6.29

Copyright (C) 2009 NTT Data Corporation 19

Kernel
TOMOYO Linux

2009/10/23

Adapting ccstools
Ccstools is for managing TOMOYO’s

policy.
Ccstools was intended for use on PC
Ccstools has been enhanced with Network

mode for embedded systems
More convenient for developing policies

and debugging
Two utilities are needed for the device:

ccs-init, ccs-editpolicy-agent

Copyright (C) 2009 NTT Data Corporation 202009/10/23

Modifying Android boot (1/2)
 Put "ccs-init (program for activating TOMOYO)"

inside /sbin/

 the kernel will call /sbin/ccs-init before /init starts.

 Copy below files needed by /sbin/ccs-init

 /system/bin/linker
 /system/ partition is not mounted yet when /sbin/ccs-init starts.

 /lib/libc.so

 /lib/libm.so
 Environment variable LD_LIBRARY_PATH="/system/lib" is not

set yet when /sbin/ccs-init starts.

Copyright (C) 2009 NTT Data Corporation 212009/10/23

Modifying Android boot (2/2)
 Put "ccs-editpolicy-agent (program for

managing TOMOYO remotely)" inside /sbin/

Append

to /init.rc
 ccs-editpolicy-agent will listen to tcp port 7000

 We can issue "adb forward tcp:10000 tcp:7000" to
connect from host environment.

Copyright (C) 2009 NTT Data Corporation 22

service ccs_agent /sbin/ccs-editpolicy-agent 0.0.0.0:7000
oneshot

2009/10/23

Creating policy
Put access control settings (a.k.a.

policy) in /etc/ccs

 /sbin/ccs-init will load them

Details:
http://tomoyo.sourceforge.jp/1.7/android-arm.html

Copyright (C) 2009 NTT Data Corporation 232009/10/23

TOMOYO on Android overview

Copyright (C) 2009 NTT Data Corporation 242009/10/23

TOMOYO on Android overview

Copyright (C) 2009 NTT Data Corporation 25

TOMOYO tools

TOMOYO patch

2009/10/23

EDITING POLICY (VIA AGENT)

Copyright (C) 2009 NTT Data Corporation 262009/10/23

Environment

Copyright (C) 2009 NTT Data Corporation 27

Android emulator (Goldfish)

TOMOYO Linux (kernel patch)

Android runtime

Application framework

TOMOYO Agent
ccs-editpolicy-agent

app

Ubuntu 8.04

app app app

Libraries
Policy editor

ccs-editpolicy TCP/IP

2009/10/23

Editpolicy

Copyright (C) 2009 NTT Data Corporation 282009/10/23

Domain transition tree

29

Profile number

Copyright (C) 2009 NTT Data Corporation2009/10/23

Profile

Copyright (C) 2009 NTT Data Corporation 30

Profile 0 for disabled, 1 for learning,

2 for permissive, 3 for enforcing
2009/10/23

Process tree

31

Profile number

Copyright (C) 2009 NTT Data Corporation2009/10/23

Process tree

32

initinitDaemons

service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server

servicemanager

mediaserver

zygote

Copyright (C) 2009 NTT Data Corporation2009/10/23

Problem with splitting domains
 The applications are executed with different UID (i.e.: root,

system, app_#, …) and different process name, but…

33

service
manager
service

managerApplications

System Server

Copyright (C) 2009 NTT Data Corporation2009/10/23

Adapting ccstools

Problem with splitting domains
 The applications are executed with different UID (i.e.: root,

system, app_#, …) and different process name, but…

 …they are all fork()ed from app_process!

34

service
manager
service

managerApplications

System Server

zygote

Dalvik VMDalvik VMDalvik VM

fork()

Copyright (C) 2009 NTT Data Corporation2009/10/23

Adapting ccstools

Problem with splitting domains
 New and unexpected situation for

TOMOYO Linux

 In TOMOYO Linux,
domain transitions occur after
process invocation, that is
execve(), not fork()

Splitting domain

<kernel> /init /system/bin/app_process

in different domains according to
each single application is
impossible. . . ?

35Copyright (C) 2009 NTT Data Corporation2009/10/23

Problem with splitting domains

36

<kernel> /init /system/bin/app_process

Copyright (C) 2009 NTT Data Corporation2009/10/23

TOMOYO’s MAC and Android DAC
 Android security rule: data files of one application should

be prevented from being accessed by other applications

 This is performed by using DAC permissions, as said before

 TOMOYO can provide with conditional ACL a further
insurance that this rule is respected, especially in cases
when:

 DAC permissions are poorly configured

 root process (zygote) would be hijacked

37

allow_read/write @APP_DATA_FILE if task.uid=path1.uid

allow_unlink @APP_DATA_FILE if task.uid=path1.uid

allow_mkdir @APP_DATA_DIR if task.uid=path1.parent.uid1

Copyright (C) 2009 NTT Data Corporation2009/10/23

TOMOYO’s MAC and Android DAC
 DAC’s ability to restrict by UID has a low granularity: only

“owner”, “group”, “others”.

 TOMOYO, on the other hand, allows minimal and
customizable permissions to any group of specific UIDs.

 Example: users are app_1, app_2, app_3, app_4; some files
owned by app_2 (uid=10002) need to be accessed by app_1
(uid=10001) also, but not by all the “others”.

38

allow_read/write @SOME_FILES if task.uid=10001-10002

Copyright (C) 2009 NTT Data Corporation2009/10/23

An example
We want to allow only the Browser to connect to Internet.

In this way any process running under
“<kernel> /init /system/app/process”

domain would be allowed to open TCP connection on any IP, port 80.

 least-privilege principle violated

39Copyright (C) 2009 NTT Data Corporation2009/10/23

Solution
 TOMOYO Linux allows conditional ACL

 Using task’s UID as a condition, for access grant.

40

In this way only the process with UID in
HTTP_USERS group will be able to connect

Copyright (C) 2009 NTT Data Corporation2009/10/23

Solution
 Add UID of browser application to HTTP_USERS group

41

UID=10012

In this way only browser will be able to connect

Copyright (C) 2009 NTT Data Corporation2009/10/23

DEMO: Make policy for Web browser

Web browser access to restrict the location

Copyright (C) 2009 NTT Data Corporation 422009/10/23

Saving access logs
You can save access logs by starting ccs-

auditd (host computer) as shown below.

Copyright (C) 2009 NTT Data Corporation 43

/usr/sbin/ccs-auditd /tmp/grant_log /tmp/reject_log 127.0.0.1:10000

2009/10/23

#2009-10-19 10:07:15# profile=1 mode=learning (global-pid=36) task={ pid=36 ppid=1 uid=0 gid=0 euid=0 egid=0

suid=0 sgid=0 fsuid=0 fsgid=0 state[0]=0 state[1]=0 state[2]=0 type!=execute_handler } path1={ uid=0 gid=2000 in

o=537 major=31 minor=0 perm=0755 type=file } path1.parent={ uid=0 gid=2000 ino=468 perm=0755 } exec={ real

path="/system/bin/app_process" argc=5 envc=10 argv[]={ "/system/bin/app_process" "-Xzygote" "/system/bin" "--z

ygote" "--start-system-server" } envp[]={ "PATH=/sbin:/system/sbin:/system/bin:/system/xbin" "LD_LIBRARY_PAT

H=/system/lib" "ANDROID_BOOTLOGO=1" "ANDROID_ROOT=/system" "ANDROID_ASSETS=/system/app" "A

NDROID_DATA=/data" "EXTERNAL_STORAGE=/sdcard" "BOOTCLASSPATH=/system/framework/core.jar:/syst

em/framework/ext.jar:/system/framework/framework.jar:/system/framework/android.policy.jar:/system/framework/s

ervices.jar" "ANDROID_PROPERTY_WORKSPACE=9,32768" "ANDROID_SOCKET_zygote=10" } }

<kernel> /init

allow_execute /system/bin/app_process

 You can create advanced policy settings from access logs.

Policy error handler
Similar to “page fault handler”

Copyright (C) 2009 NTT Data Corporation 44

Access request

Permitted
by policy?

Permitted
by handler?

YES

Access granted Access rejected

YES

NO NO

2009/10/23

Conclusions

TOMOYO Linux suits well on Android

Will suits on other embedded devices as well

MAC enforced for system services and user

applications

Whole system or targeted applications

Why not to try TOMOYO?

45Copyright (C) 2009 NTT Data Corporation2009/10/23

Copyright (C) 2009 NTT Data Corporation 46

Thank you for your attention

Daisuke Numaguchi <numaguchid@nttdata.co.jp>

Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>

Giuseppe La Tona <giuseppelatona@gmail.com>

2009/10/23

Information
Mailing list

 English: tomoyo-users-en@lists.sourceforge.jp

 Japanese: tomoyo-users@lists.sourceforge.jp

Web site

 http://tomoyo.sourceforge.jp/

Wiki

 http://elinux.org/TomoyoLinux

Copyright (C) 2009 NTT Data Corporation 472009/10/23

Copyrights
Linux is a registered trademark of Linus

Torvalds in Japan and other countries

Android is a registered trademark of Google

TOMOYO is a registered trademark of NTT
Data Corporation in Japan

Other names and trademarks are the
property of their respective owners.

Copyright (C) 2009 NTT Data Corporation 482009/10/23

