
Chained Enforceable Re-authentication Barrier Ensures Really Unbreakable Security
Toshiharu Harada Takaaki Matsumoto

NTT DATA CORPORATION

Abstract: Mandatory Access Control (MAC) is a powerful guard against non-authorized access, but is vulnerable to

hackers logged in through proper procedure. This paper describes how to guard such case using MAC.

Keywords: Mandatory Access Control, MAC, Login Authentication, Anti-Spoofing

1. Introduction
The DAC (Discretionary Access Control), which

Microsoft Windows, Linux and many other operating
systems have built-in, holds vulnerabilities and there are
risks caused by DAC's vulnerabilities. To solve DAC's
problem, MAC (Mandatory Access Control) was invented
[1]. At first, the MAC was implemented for the systems
that have special requirements including military use. But
LSM [2] (a framework to provide MAC to Linux) and
SELinux [3] (one of implementations that provides MAC
using LSM) were introduced into Linux (the open sourced
operating system) on November 2004, and the MAC
became closer to us at a stretch. While the environment to
build secure Linux system has been greatly improved, the
purpose and meaning of security enhancement by
introducing the security enhanced OS are not very
accurately known. According to a paper [4] by SELinux
development project, the following two are the merits of
introducing SELinux.
・ Handling of the threats posed by "Tampering" or

"Avoidance of security mechanisms at application
level".

・ Minimizing the damage caused by malicious or
vulnerable applications.

These are the exactly merits gained by security
enhancement at OS level. These are never excessive
requirements and all computer systems should provide
essentially. But you need to be careful that the
introduction of MAC itself doesn't promise protection
against all kinds of damage. On the systems that have
MAC support, if MAC's policies are defined appropriately,
the system won't get damaged indefinitely by invoking
shell with administrator's privilege even if some process is
hijacked due to vulnerability such as buffer overflow. But
since it is possible to log into the system through proper
procedure (for example, login authentication using valid
username and correct password), there is a threat that a
cracker logs into the system in case the password's secrecy
is broken. It is possible to define strict policies for routine
tasks and functions. But it is difficult to define strict
policies for administration task that is done by
administrator logged into the system. In SELinux, it is
possible to define policies that deactivate root privilege [5],
but there remains an interface to modify and reflect
policies, and the interface is protected by conventional
password authentication after all. This paper describes
how to prevent crackers from logging in through proper
procedure using MAC, using TOMOYO Linux (one of MAC
implementations which the authors of this paper
(hereafter, we) have originally developed).

2. Vulnerabilities of Login Authentication

The general method of login authentication used in
many computer systems is password authentication that
uses password supplied by user. Typically, login
authentication can be performed only once. Therefore,
login authentication always has threats such as password
cracking using dictionary attack or avoidance of login
authentication by attacking authentication program's
vulnerability (for example, buffer overflow).

Conventional login authentication has the following
problems.
・ Login authentication can be performed only once.
・ Passwords are used in many systems.
・ Have to worry password's secrecy because you can't

know the moment your password being cracked.
・ Have to worry vulnerability of authentication

programs.
These problems are described below.

2.1. Login authentication can be performed only once.

Normally, the login authentication is performed only
once before a user logs into the system, regardless of the
user is system administrator or not. Some security aware
applications (for example, database software) enforce
application specific authentications, but users can access
to almost all resources if they passed the login
authentication. There are some attempts to notify the
possibility of illegal logins (for example, displaying last
login time) after the user passed the login authentication.
But even if the user can notice illegal logins, it's useless
because the system is already damaged and the user can't
respond. Moreover, the user even can't identify the
damaged range of the system after the fact.

2.2. Passwords are used in many systems.

The only basis of password authentication is the
correctness of the ordering of password string. Therefore,
it is problematic that users have to keep their password's
secrecy. Possible risks are, cracked by dictionary attack,
stolen by eavesdropping or social engineering. It is
possible to reduce these risks by introducing special
systems (for example, one-time passwords, biometrics),
but they are costly because administrators have to
introduce special devices or special software.

2.3. Have to worry password's secrecy.

It is possible to detect that user's passwords are
attacked (for example, using dictionary attack) by
monitoring authentication failure log. But you can't

answer to the following questions.
"How many days does the cracker need to find my

correct password?" (In other words, "When is the last day I
can use my password safely?")

"Changing my password ALWAYS makes things safer,
for I found an attempt to crack my password?" (In other
words, "Changing my password ALWAYS makes the
cracker need more days to crack my password?")

There are discussions about "Password authentication
and pass phrase authentication, which one is stronger?"[6],
but neither password authentication nor pass phrase
authentication can answer to these questions after all.
Operations that forces users to change their passwords so
frequently makes their passwords easier and, as a result,
will lead to insecure system.

2.4. Have to worry vulnerability of authentication

programs.
Even if you introduced recently spreading special

devices (such as fingerprint authentication, iris
verification), the authentication might be avoided if there
is vulnerability (such as buffer overflow) in the program
that handles these devices.

3. Security Enhanced OS

3.1. The concept of security enhancement at OS level.

 The MAC is capable to forbid execution of unnecessary
functions by controlling OS's behavior, although OSes are
originally made available for generic purpose. The MAC's
access control is applied to all processes and all users
without exception, and can precisely restrict resources
such as files and directories that processes and users can
access. In normal Linux, DAC's access control is not
applied to the system administrator (i.e. root). In general,
an OS that supports MAC is called "Security Enhanced
OS"[3].
 The reason why security enhanced OS is helpful is
described below with a simple example. Processes that
provide services over network (such as ftp server, samba)
are always configured to accept request from network. The
crackers can hijack these processes and invoke shell with
administrator's privilege if vulnerability exists in these
programs. OSes that don't support MAC cannot prevent
the invocation of shells or invocation of malicious
commands from the invoked shells. But if MAC is
supported and appropriate policies are defined by
administrators, the OS can prevent the invocation of
shells that are essentially unnecessary for these processes
if the processes are hijacked.

3.2. Reinforcement of login authentication using security

enhanced OSes
In general, the security enhanced OSes are introduced

to reduce the damage of hijacking and to ensure the data
integrity. But the login authentication can produce
unexpected pitfalls, as described above. However, it is
possible to solve this problem using MAC that security
enhanced OSes support. The basic idea is "Multiplex the
Login Authentications". The login authentication
multiplexing itself is possible to OSes that don't support

MAC, but has significant points on OSes that support
MAC, for OSes that support MAC can enforce the
multiplexed login authentications.

4. Login Authentication Multiplexing

4.1. Image of multiplexing

The Fig. 1 shows the conventional login authentication,
and the Fig. 2 shows the multiplexed login authentications.
The purpose of login authentication is to prevent crackers
from reaching to the castle.

Fig. 1 creates a hole and places a guard. The guard
means a program that performs authentication. There is
only one wall. Without MAC, the wall could be broken and
the cracker can reach to the castle without passing the
guard (i.e. the cracker can log into the system without
passing login authentication).

By introducing MAC, the wall becomes unbreakable (i.e.
the cracker can't log into the system without passing login
authentication). But since there is only one guard, the
cracker can reach to the castle if the cracker could pass
the login authentication through proper procedure (using
valid username and correct password).

Login
Authentication

(Built-in)

Login
Authentication

(Built-in)

Fig. 1 Conventional Login Authentication

Fig.2 inserts two walls between the original wall and
the castle, each wall has one hole and one guard. The
cracker has to pass all guards to reach to the castle.

Login
Authentication

(Built-in)

First Extra
Authentication

Second Extra
Authentication

Login
Authentication

(Built-in)

First Extra
Authentication

Second Extra
Authentication

Fig. 2 Multiplexed Login Authentications

4.2. Example programs for extra authentication
You need to place newly developed authentication

programs for First and Second Extra Authentications
shown in Fig. 2. Some examples using shell scripts are
shown below. But you should develop your programs using
non-scripting (for example C) language for production
environment, for the content of shell script program is
exposed if the environment variable "SHELLOPTS" is set
with "verbose" flag.

(1) Simple password authentication

 This program (Fig. 3) requires "SAKURA" as
password. The authentication fails if the user entered
wrong password for 3 times.

#! /bin/sh
for i in 1 2 3
do
 read -r -s -p 'Password: ' passwd
 echo
 ["$passwd" = "SAKURA"] && exec $SHELL
done
echo 'Incorrect password.'

Fig. 3 Simple password authentication

(2) Non-password authentication

This program (Fig. 4) authenticates the user by the
existence of the file /data/rootauth . This program prompts
users to enter password, but that is a dummy. The
authentication always fails whatever passwords the
cracker guesses unless the file exists. The file needs to be
created (using touch commands, for example) prior to the
execution of this program. (Since a terminal is supplied to
the user after the conventional login authentication, the
user can execute necessary command if granted by the
policy.)

#! /bin/sh
for i in 1 2 3
do
 read -r -s -p 'Password: ' passwd
 echo
 [-f /data/rootauth] && exec $SHELL
done
echo 'Incorrect password.'

Fig. 4 Non-password authentication

(3) Never succeeding authentication

This program (Fig. 5) prompts users to enter passwords,
but never succeed. This program is not for legal users, but
for crackers who don't know how to pass this
authentication. This program will confuse crackers.

#! /bin/sh
while :
do
 read -r -s -p 'Password: ' passwd
 echo
done

Fig. 5 Never succeeding authentication

Typically, the system looses protections against crackers

when the cracker successfully passed conventional login
authentication. But you can counter this threat by
introducing extra authentications with various
authentication rules and enforce them using MAC.

5. Advantages of Login Authentication Multiplexing

The following merits are derived by login authentication
multiplexing.

5.1. You can enforce login authentication for arbitrary

times.
You can enforce login authentication for arbitrary times

depending on the resource's importance. For example, you
can allow access to trivial resources after passing only
conventional login authentication and allow access to
critical resources after passing three extra login
authentications.

5.2. You needn't to worry about vulnerability of

authentication programs.
The vulnerability of authentication program is critical if

the authentication can be performed only once. But since
you can enforce multiple different authentications, it
won't matter so much if one of the authentication
programs has vulnerability.

5.3. You can use everything for authentication

As with conventional login authentication, the system
can't know the process of supplying passwords and the
authentication program authorizes the user using the
supplied passwords. But after the conventional login
authentication, a terminal (or a console) environment is
provided to the user. This means that the authentication
programs can know the user's behavior in great detail. You
can use not only password strings but also all elements for
authentication, for the authentication programs can know
(for example) the speed of key typing or the user's
behavior after the conventional login authentication and
can use these elements for authentication.

Another example, you can use the existence of specific
files (Fig. 4) or the contents of specific file as a password.
You can use flags that always fail the authentication
request like /etc/nologin , last modified time of specific file
to test "Whether this authentication is started within 1
minute from the previous authentication".

The programs that perform authentication even needn't
to be recognized at a glance that the programs are used for
authentication. For example, a screen like card games
appear when the program is executed and actually users
can play with, but the authentication succeeds only when
the specific key is pressed at the specific timing (like a
kind of trapdoor programs). The requirement is that
authentication programs are programs that only the legal
users know the procedure how to pass that authentication.

You can create authentication programs in the same
manner of developing normal application programs. Your
idea makes strong authentication and the possible
combinations of elements are infinite.

5.4. No damage unless all authentications are penetrated.

You can define policies that forbid access to critical
resources unless the user passes all login authentications.

Specifically define policies that allow users who passed
one login authentication do minimum operations that are
needed to pass the next login authentication. You may
append policies that allow users to execute dummy
authentication program (like Fig. 5) to make penetration
more difficult.

5.5. You can advise to legal users.

You can know which authentication program was
penetrated, and you can replace only the program that
was penetrated.

You can notify to users by sending mail like "The login
authentication of host XXXXX was penetrated, but the
cracker was eliminated by extra authentication
mechanism. To prevent another penetration, I changed
your password to XXXXXXX."

6. Practical Issues and Solutions

6.1. Login shell

Login shell is a program that is executed when a user
logs into the system, and is specified in the /etc/passwd file.
In Linux, bash, ksh, tcsh, zsh etc. are available.

Shell is provided to execute external programs, but most
shells have their internal (built-in) commands.

An example of shell's internal commands is "kill", which
sends signals to processes. A cracker who passed the login
authentication can forcefully terminate arbitrary process
if appropriate privilege is given.

Of course, it is possible to restrict signal transmission
using MAC's policy. But that is not enough.

A cracker can give high load using infinite loop using
shell's internal command. For example, if the cracker
gives internal command "while : ; do echo ; done" to bash,
the system's response become slower. It is impossible to
prevent this CPU consumption attack by infinite loop
using MAC's policy.

Therefore, to apply this login authentication
multiplexing method, it is important that login shells
don't have unnecessary internal commands. The role of
login shells is to provide interface to execute the next
extra authentication. Less functional shells are better and
suitable. Of course, you can use normal shells to start
actual operations after passing all login authentications.

6.2. "scp" and "sftp"

There are two commands that are frequently used for
server maintenance purpose, "scp" and "sftp". But it is
impossible to apply this login authentication multiplexing
method for these programs. The reason and solutions are
described below.

A shell has two operation modes, one is "interactive
mode" that prompts and waits for user's input, the other is
"batch mode" that are invoked with "-c command list"
command line parameter and process the given command
list and then terminates. The method this paper describes
invokes login shells in "interactive mode" and restricts

user's behavior so that only operations that are necessary
to pass the next authentication are allowed using MAC's
policy; to prevent subversive acts unless the cracker
succeeds all login authentications. Therefore, programs
that invokes login shell in "batch mode" ("scp" connects to
remote host using "ssh" and invokes remote host's login
shell with "-c scp arguments" options. "sftp" connects to
remote host using "ssh" and invokes remote host's login
shell with "-c /usr/libexec/openssh/sftp-server" options.)
can't recognize the extra login authentications; i.e. you
can't use login authentication multiplexing for "scp" and
"sftp". This means that resources that are accessible
become vulnerable if the cracker passes ssh's login
authentication.

The solution is that restrict resources that are
accessible to such programs. Specifically, define policy
that limits reading/writing to specific temporal directory,
and move data between the specific temporal directory and
the other directories from shells that are invoked after all
extra authentication are succeeded.

7. Implementation using TOMOYO Linux

7.1. About TOMOYO Linux

TOMOYO Linux is one of MAC implementations that we
have developed based on vanilla Linux kernels, and has
"accept mode" that helps administrators defining MAC
policies. Please refer to document [7] for abstract, and
document [8] for implementation.

TOMOYO Linux defines DOMAIN (the unitary of
granting ACLs) based on the process's invocation history,
and lists ACLs that are allowed to each DOMAIN. The
ACL consists of the access mode (read/write/execute) and
the pathnames. For example, define the following line to
allow /bin/bash which are invoked by /usr/sbin/sshd (i.e. a
user logged into the system using ssh) to read /etc/passwd
and execute /usr/bin/scp .

<kernel> /usr/sbin/sshd /bin/bash

4 /etc/passwd
1 /usr/bin/scp

The integer before pathnames corresponds to UNIX's
permission. For example, "4" is "r--", "1" is "--x", "6" is
"rw-", and "7" is "rwx". The name of DOMAIN starts with
<kernel> , and the program's pathname is concatenated to
the name of DOMAIN where the program is invoked. For
example, the name of DOMAIN for /bin/tcsh that is
invoked by /bin/bash that is invoked by /usr/sbin/sshd (i.e.
a user logged into the system using ssh and invoked
/bin/tcsh from the login shell) is represented as follows.

<kernel> /usr/sbin/sshd /bin/bash /bin/tcsh

The granularity of TOMOYO Linux's access mode is not
high as SELinux. But since you can define policies using
pathnames, it is easy to understand for administrators
who have standard administration skill. And since
DOMAIN is divided by invocation of a program and the
ACLs are given for 1-file-at-a-time, you can specify more

precisely than SELinux.

7.2. Actual example policy

This section describes an actual example policy of login
authentication multiplexing shown in Fig. 2. To help
understanding, miscellaneous files like library files are
omitted. The scenario for this policy is the following.
・ Login using ssh and invoke (our custom made shell)

/bin/falsh as the login shell. /bin/falsh has no built-in
commands like "kill" or "while" to prevent attacks (for
example, killing processes, infinite loop) using login
shells.

・ Invoke (our custom made authentication program)
/bin/honey (which corresponds to First Extra
Authentication in Fig. 2). /bin/honey prompts for
password input, but this program checks not only the
password string but also the time interval each
letters are typed. The authentication fails if either
password string or the time intervals (preset in this
program) don't match.

・ Invoke (our custom made authentication program)
/bin/candy (which corresponds to Second Extra
Authentication in Fig. 2). /bin/candy prompts for
password input, but this program checks not only the
password string but also the elapsed time from the
invocation of the parent process. The authentication
fails if either password string doesn't match or the
elapsed time is longer than 10 seconds. (It is difficult
to start /bin/candy after the invocation of /bin/honey
within 10 seconds, for /bin/honey needs a several
seconds. Therefore, /bin/falsh is inserted between
/bin/honey and /bin/candy to reset the invocation time
of the parent process.)

・ Since "scp" and "sftp" need to be executed from login
shell, the policy allows executing these programs from
login shell, but these programs can access to only
/data/scp.tmp directory.

<kernel> /usr/sbin/sshd /bin/falsh

1 /bin/honey
1 /usr/bin/scp
1 /usr/libexec/openssh/sftp-server

<kernel> /usr/sbin/sshd /bin/falsh /usr/bin/scp

6 /data/scp.tmp/¥*

<kernel> /usr/sbin/sshd /bin/falsh
/usr/libexec/openssh/sftp-server

6 /data/scp.tmp/¥*

<kernel> /usr/sbin/sshd /bin/falsh /bin/honey
1 /bin/falsh

<kernel> /usr/sbin/sshd /bin/falsh /bin/honey /bin/falsh
1 /bin/falsh

<kernel> /usr/sbin/sshd /bin/falsh /bin/honey /bin/falsh
/bin/falsh

1 /bin/candy

<kernel> /usr/sbin/sshd /bin/falsh /bin/honey /bin/falsh
/bin/falsh /bin/candy
1 /bin/falsh

<kernel> /usr/sbin/sshd /bin/falsh /bin/honey /bin/falsh
/bin/falsh /bin/candy /bin/falsh
1 /bin/bash

<kernel> /usr/sbin/sshd /bin/falsh /bin/honey /bin/falsh
/bin/falsh /bin/candy /bin/falsh /bin/bash

In addition to this, register the DOMAIN "<kernel>
/usr/sbin/sshd /bin/falsh /bin/honey /bin/falsh /bin/falsh
/bin/candy /bin/falsh /bin/bash" as trusted, and move data
between /data/scp.tmp and other directories from this
trusted DOMAIN.

7.3. Actual operation

This section describes the procedure for users. Fig. 6 is a
screenshot that a user is connecting to a Linux server
using ssh. In the screenshot, the user enters password
strings to log in, as conventional.

Fig. 6 Conventional login authentication

After the user passed ssh's login authentication, invoke
"/bin/honey /bin/falsh /bin/candy" in this order (as defined
in the policy) and precede the authentication. Fig. 7
contains authentication failures intently to show that the
extra login authentications aren't simple password
authentications. Also, the passwords supplied are visible,
for this is a demonstration.

In the first attempt of /bin/honey , the user entered the
correct password, but the authentication failed since the
typing interval was inappropriate. In the second attempt
of /bin/honey , the user entered the correct password with
appropriate typing interval, and the authentication
succeeded.

In the first attempt of /bin/candy , the authentication
failed due to incorrect password. In the second attempt of
/bin/candy , the user entered the correct password, but the

authentication failed since /bin/candy has to be invoked
within 10 seconds after the shell (/bin/falsh) starts. In the
third attempt of /bin/candy , the user entered the correct
password, and the authentication succeeded since
/bin/candy is invoked within 10 seconds after /bin/falsh
starts.

Fig. 7 Extra login authentications

After the user passed /bin/candy (i.e. the user has
reached to the castle in Fig. 2), invoke /bin/bash and start
normal operations.

8. Discussion

8.1. Comparison with PAM

It is possible to perform multiple authentication
methods using PAM (Pluggable Authentication Modules)
to reduce the risks of illegal login. But if PAM itself has
vulnerability, the login shell could be started before
performing all authentication modules specified as
"requisite".

Also, there are typically only two input fields (username
and password) like Fig. 6, it is impossible to use multiple
passwords using PAM provided by the system. Therefore,
people combine with other methods that use information
other than password; for example, hours checking
(pam_time.so) and the name of terminal device
(pam_securetty.so).

If you WANT to use multiple passwords, you have to
stuff all passwords into one input field, splitting by
column number like Fig. 8. But the way of splitting
password field (the way of interpretation) changes
whenever new elements are stuffed into password field.
This means you need to negotiate with all modules that
share password field.

Fig. 8 Stuffing all passwords into one field

On the contrary, the way of multiplexing needn't to
change the password field when the authentication
method changes, for passwords are supplied on each step
like Fig. 6 and Fig. 7. This means you needn't to change
existent protocols and PAM configurations.

8.2. Elements available for authentication

As with conventional login authentication, the system
can't know the process of supplying passwords and the
authentication program authorizes the user using the
supplied passwords. But by introducing login
authentication multiplexing, the authentication programs
can know (for example) the speed of key typing or the
user's behavior after the conventional login authentication.
This allows you to choose your favorite elements from
infinite number of elements to create customized login
authentication.

8.3. Burden increment on users

It is acceptable to provide multiple information for
authentication on the systems that worth protecting from
penetration by providing extra information other than
password for authentication.

Our method is just supplying one information on each
authentication instead of supplying all information at
once. In the view of users, only the timing of supplying
information is changed. There is no limitation for extra
authentication program, so you can choose one that the
users feel minimum burden.

8.4. Price for paying for login authentication reinforcement

Our method doesn't cause overall damage if there is
vulnerability in one of the authentication programs. You
can improve security for login authentication dramatically
with just tens of lines code in C language.

8.5. Security Stadium 2004

We attended at Security Stadium 2004 held by JNSA on
the defense side. We announced root's password so that
the offence side can login via ssh (without cracking sshd).
We received attacks by security experts, and turned out

that our method is very effective. Please refer to document
[9] for details.

8.6. Applying to OSes that doesn't support MAC

It is possible to perform multiplexed login
authentications for OSes that don't support MAC. But
since the behavior of authentication programs can't be
restricted from outside using MAC's policy, each
authentication program has to restrict its behavior, and
developers have to be very careful not to create security
loopholes. If MAC is supported, the behavior of
authentication programs are restricted from outside using
MAC's policy, and developers can easily develop
authentication programs without worrying security
loopholes. Therefore, our method has significant points on
OSes that support MAC.

9. Conclusion

The security enhanced OSes are invented to protect
from unauthorized access and leakage of information, and
are getting to spread. It is possible to reduce the risk of
hijacking due to vulnerability such as buffer overflow and
improve system security by defining appropriate policy.
But how well access to system resources is controlled, the
dependence on the password login authentication can
produce unexpected pitfalls. The method of login
authentication multiplexing described in this paper is
easy to implement and doesn't require one-time passwords
or costly biometrics technology.
Acknowledgment: We were supported from the
technological study to implementation and evaluation on
TOMOYO Linux by Tetsuo Handa, NTT DATA
CUSTOMER SERVICE CORPORATION. We would like to
thank Mr. Handa.

Bibliography
[1] "A research on information systems for e-Government
based on OSes with well-considered security" (Written in
Japanese)

http://www.bits.go.jp/inquiry/pdf/secure_os_2004.pdf
[2] Linux Security Modules

http://lsm.immunix.org/
[3] National Security Agency, Security-Enhanced Linux

http://www.nsa.gov/selinux/
[4] “Meeting Critical Security Objectives with
Security-Enhanced Linux”

http://www.nsa.gov/selinux/papers/ottawa01-abs.cfm
[5] SELinux Play Machines

http://www.coker.com.au/selinux/play.html
[6] Pass Phrases vs. Passwords

http://www.microsoft.com/technet/community/columns/s
ecmgmt/sm1004.mspx
[7] Toshiharu HARADA, Takashi HORIE and Kazuo
TANAKA, "Towards a manageable Linux security." Linux
Conference 2005

http://sourceforge.jp/projects/tomoyo/document/lc2005-e
n.pdf
[8] Toshiharu HARADA, Takashi HORIE and Kazuo
TANAKA, "Task Oriented Management Obviates Your
Onus on Linux." Linux Conference 2004

http://sourceforge.jp/projects/tomoyo/document/lc2004-e

n.pdf
[9] Security Stadium 2004 (Written in Japanese)

http://www.jnsa.org/active/press/vol12pdf/4_report4.pdf

Notes

This is a translation of the original paper, which was

written in Japanese and published in Workshop on

Informatics 2005 held in Japan. You can obtain the

original paper from the following URL.

http://sourceforge.jp/projects/tomoyo/document/winf200

5.pdf

TOMOYO Linux was released on November, 11, 2005.

You can get more information at the following URLs.

http://tomoyo.sourceforge.jp/
http://sourceforge.jp/projects/tomoyo/

	NTT DATA CORPORATION
	1. Introduction
	2. Vulnerabilities of Login Authentication
	2.1. Login authentication can be performed only once.
	2.2. Passwords are used in many systems.
	2.3. Have to worry password's secrecy.
	2.4. Have to worry vulnerability of authentication programs.
	3. Security Enhanced OS
	3.1. The concept of security enhancement at OS level.
	3.2. Reinforcement of login authentication using security enhanced OSes

	4. Login Authentication Multiplexing
	4.1. Image of multiplexing
	4.2. Example programs for extra authentication

	5. Advantages of Login Authentication Multiplexing
	5.1. You can enforce login authentication for arbitrary times.
	5.2. You needn't to worry about vulnerability of authentication programs.
	5.3. You can use everything for authentication
	5.4. No damage unless all authentications are penetrated.
	5.5. You can advise to legal users.

	6. Practical Issues and Solutions
	6.1. Login shell
	6.2. "scp" and "sftp"

	7. Implementation using TOMOYO Linux
	7.1. About TOMOYO Linux

	8. Discussion
	8.1. Comparison with PAM
	8.2. Elements available for authentication
	8.3. Burden increment on users
	8.4. Price for paying for login authentication reinforcement
	8.5. Security Stadium 2004
	8.6. Applying to OSes that doesn't support MAC

	9. Conclusion

